skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kidder, Lawrence E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Standardizing the definition of eccentricity is necessary for unambiguous inference of the orbital eccentricity of compact binaries from gravitational wave observations. In previous works, we proposed a definition of eccentricity for systems without spin-precession that relies solely on the gravitational waveform, is applicable to any waveform model, and has the correct Newtonian limit. In this work, we extend this definition to spin-precessing systems. This simple yet effective extension relies on first transforming the waveform from the inertial frame to the coprecessing frame, and then adopting an amplitude and a phase with reduced spin-induced effects. Our method includes a robust procedure for filtering out spin-induced modulations, which become non-negligible in the small eccentricity and large spin-precession regime. Finally, we apply our method to a set of Numerical Relativity and Effective One Body waveforms to showcase its robustness for generic eccentric spin-precessing binaries. We make our method public via Python implementation ingw_eccentricity. 
    more » « less
    Free, publicly-accessible full text available September 29, 2026
  2. The measurement of orbital eccentricity in gravitational-wave (GW) signals will provide unique insights into the astrophysical origin of binary systems, while ignoring eccentricity in waveform models could introduce significant biases in parameter estimation and tests of general relativity. Upcoming LIGO-Virgo-KAGRA observing runs are expected to detect a subpopulation of eccentric signals, making it vital to develop accurate waveform models for eccentric orbits. Here, employing recent analytical results through the third post-Newtonian order, we develop v5: a new time-domain, effective-one-body, multipolar waveform model for eccentric binary black holes with spins aligned (or antialigned) with the orbital angular momentum. Besides the dominant (2, 2) mode, the model includes the (2, 1), (3, 3), (3, 2), (4, 4), and (4, 3) modes. We validate the model’s accuracy by computing its unfaithfulness against 99 (28 public and 71 private) eccentric numerical-relativity (NR) simulations, produced by the Simulating eXtreme Spacetimes Collaboration. Importantly, for NR waveforms with initial GW eccentricities below 0.5, the maximum (2, 2)-mode unfaithfulness across the total mass range 20 200 M is consistently below or close to 1%, with a median value of 0.02 % , reflecting an accuracy improvement of approximately an order of magnitude compared to the previous-generation v4 and the state-of-the-art esumalí eccentric model. In the quasi-circular-orbit limit, v5 is in excellent agreement with the highly accurate v5 model. The accuracy, robustness, and speed of v5 make it suitable for data analysis and astrophysical studies. We demonstrate this by performing a set of recovery studies of synthetic NR-signal injections, and parameter-estimation analyses of the events GW150914 and GW190521, which we find to have no eccentricity signatures. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  3. is a method of reducing computational burden in numerical relativity simulations of binary black holes in situations where there is a good analytical model of the geometry around (one or both of) the objects. Two such scenarios of relevance in gravitational-wave astronomy are (1) the case of mass-disparate systems, and (2) the early inspiral when the separation is still large. Here we illustrate the utility and flexibility of this technique with simulations of the fully self-consistent radiative evolution in the model problem of a scalar charge orbiting a Schwarzschild black hole under the effect of scalar-field radiation reaction. We explore a range of orbital configurations, including inspirals with large eccentricity (which we follow through to the final plunge and ringdown) and hyperbolic scattering. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  4. We uncover late-time gravitational-wave tails in fully nonlinear 3 + 1 dimensional numerical relativity simulations of merging black holes, using the highly accurate p code. We achieve this result by exploiting the strong magnification of late-time tails due to binary eccentricity, recently observed in perturbative evolutions, and showcase here the tail presence in head-on configurations for several mass ratios close to unity. We validate the result through a large battery of numerical tests and detailed comparison with a perturbative evolution, which display striking agreement with full nonlinear ones in the ringdown regime, and very similar tail morphologies. Our results offer yet another confirmation of the highly predictive power of black hole perturbation theory in the presence of a source, even when applied to nonlinear solutions. The late-time tail signal is much more prominent than anticipated until recently, and possibly within reach of gravitational-wave detector measurements, unlocking observational investigations of an additional set of general relativistic predictions on the long-range gravitational dynamics. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026
  5. Free, publicly-accessible full text available September 1, 2026
  6. Abstract Cauchy-characteristic evolution (CCE) is a powerful method for accurately extracting gravitational waves at future null infinity. In this work, we extend the previously implemented CCE system within the numerical relativity code SpECTRE by incorporating a scalar field. This allows the system to capture features of beyond-general-relativity theories. We derive scalar contributions to the equations of motion, Weyl scalar computations, Bianchi identities, and balance laws at future null infinity. Our algorithm, tested across various scenarios, accurately reveals memory effects induced by both scalar and tensor fields and captures Price’s power-law tail ( u l 2 ) in scalar fields at future null infinity, in contrast to the t 2 l 3 tail at future timelike infinity. 
    more » « less
    Free, publicly-accessible full text available February 11, 2026
  7. Abstract Gravitational memory effects and the BMS freedoms exhibited at future null infinity have recently been resolved and utilized in numerical relativity simulations. With this, gravitational wave models and our understanding of the fundamental nature of general relativity have been vastly improved. In this paper, we review the history and intuition behind memory effects and BMS symmetries, how they manifest in gravitational waves, and how controlling the infinite number of BMS freedoms of numerical relativity simulations can crucially improve the waveform models that are used by gravitational wave detectors. We reiterate the fact that, with memory effects and BMS symmetries, not only can these next-generation numerical waveforms be used to observe never-before-seen physics, but they can also be used to test GR and learn new astrophysical information about our Universe. 
    more » « less
  8. We present an adaptive-order positivity-preserving conservative finite-difference scheme that allows a high-order solution away from shocks and discontinuities while guaranteeing positivity and robustness at discontinuities. This is achieved by monitoring the relative power in the highest mode of the reconstructed polynomial and reducing the order when the polynomial series no longer converges. Our approach is similar to the multidimensional optimal order detection strategy, but differs in several ways. The approach isa prioriand so does not require retaking a time step. It can also readily be combined with positivity-preserving flux limiters that have gained significant traction in computational astrophysics and numerical relativity. This combination ultimately guarantees a physical solution both during reconstruction and time stepping. We demonstrate the capabilities of the method using a standard suite of very challenging 1d, 2d, and 3d general relativistic magnetohydrodynamics test problems. 
    more » « less
  9. Abstract The recent detections of the ∼10 s longγ-ray bursts (GRBs) 211211A and 230307A followed by softer temporally extended emission (EE) and kilonovae point to a new GRB class. Using state-of-the-art first-principles simulations, we introduce a unifying theoretical framework that connects binary neutron star (BNS) and black hole–NS (BH–NS) merger populations with the fundamental physics governing compact binary GRBs (cbGRBs). For binaries with large total masses,Mtot≳ 2.8M, the compact remnant created by the merger promptly collapses into a BH surrounded by an accretion disk. The duration of the pre-magnetically arrested disk (MAD) phase sets the duration of the roughly constant power cbGRB and could be influenced by the disk mass,Md. We show that massive disks (Md≳ 0.1M), which form for large binary mass ratiosq≳ 1.2 in BNS orq≲ 3 in BH–NS mergers, inevitably produce 211211A-like long cbGRBs. Once the disk becomes MAD, the jet power drops with the mass accretion rate as M ̇ t 2 , establishing the EE decay. Two scenarios are plausible for short cbGRBs. They can be powered by BHs with less massive disks, which form for otherqvalues. Alternatively, for binaries withMtot≲ 2.8M, mergers should go through a hypermassive NS (HMNS) phase, as inferred for GW170817. Magnetized outflows from such HMNSs, which typically live for ≲1 s, offer an alternative progenitor for short cbGRBs. The first scenario is challenged by the bimodal GRB duration distribution and the fact that the Galactic BNS population peaks at sufficiently low masses that most mergers should go through an HMNS phase. 
    more » « less